
PHYSICAL REVIEW E JANUARY 1999VOLUME 59, NUMBER 1
Probability density function modeling of dispersed two-phase turbulent flows
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Jean-Pierre Minier†

Laboratoire National d’Hydraulique, Electricite´ de France, Chatou, France
~Received 25 August 1998!

This paper discusses stochastic approaches to dispersed two-phase flow modeling. A general probability
density function~PDF! formalism is used since it provides a common and convenient framework to analyze the
relations between different formulations. For two-phase flow PDF modeling, a key issue is the choice of the
state variables. In a first formulation, they include only the position and velocity of the dispersed particles. The
kinetic equation satisfied by the corresponding PDF is derived in a different way using tools from the theory
of stochastic differential equations. The final expression is identical to an earlier proposal by Reeks@Phys.
Fluids A 4, 1290~1992!# obtained with a different method. As the kinetic equation involves the instantaneous
fluid velocity sampled along the particle trajectories, it is unclosed. Another, more general, formulation is then
presented, where the fluid velocity ‘‘seen’’ by the solid particles along their paths is added to the state
variables. A diffusion model, where trajectories of the process follow a Langevin type of equation, is proposed
for the time evolution equation of the fluid velocity ‘‘seen’’ and is discussed. A general PDF formulation that
includes both fluid and particle variables, and from which both fluid and particle mean equations can be
obtained, is then put forward.@S1063-651X~99!09901-8#

PACS number~s!: 47.55.Kf, 47.27.Eq
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I. INTRODUCTION

Two-phase flow modeling is a fascinating subject at
crossroads of theoretical considerations and very prac
needs. Among the various flow regimes where the geom
of the interface between the two phases differs~for example:
annular, slug, or bubble flows!, the dispersed flow regime i
a particularly important one. Indeed, particulate flows w
the dispersed phase present in the form of small sphe
solid particles~or liquid droplets! suspended in a gaseous
liquid carrier phase are both of theoretical interest and
considerable practical importance in environmental stud
and for numerous industrial processes.

To simulate these flows, the basic field equations mus
stated first. A classical hydrodynamical description is
sumed for the carrier phase which follows the mass con
vation and the Navier-Stokes equations. For the dispe
phase, the starting point is to write the particle equations
motion, but this is less obvious than for the fluid case.
deed, in spite of numerous studies@1,2#, expressing the
forces acting on a particle in a general flow is still an op
issue. General expressions usually involve the so-called p
sure gradient, drag, added mass, and often Basset fo
@1,2#. However, for particles heavier than the carrier flo
rp@r f with r f andrp the fluid and particle densities, respe
tively ~for example, solid particles or droplets in a gas flow!,
an acceptable approximation is to retain only the drag fo
~as well as external forcesFe such as gravity! in the particle
momentum equation which has then the form

*Electronic address: jp@galia.imp.pg.gda.pl
†Electronic address: Jean-Pierre.Minier@der.edfgdf.fr
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5V,

~1!

dV

dt
5

U2V

tp
1Fe ,

where x and V are the particle location and velocity. Th
drag term is written using the particle aerodynamic rela
ation time scaletp , and U stands for the fluid velocity
‘‘seen’’ or sampled by the particle as it moves across
flow. In terms of the instantaneous Eulerian velocity fieldUf
of the carrier~fluid! phase, this fluid velocity ‘‘seen’’ is sim-
ply U5Uf(t,x). The two phases~the fluid and the particles!
exchange momentum and energy. Furthermore, one
have to take particle collisions into account for high-enou
concentrations.

One possible way to simulate two-phase flows is theref
to solve the Navier-Stokes equations, to which source te
that represent the exchange of momentum between the
ticles and the flow may be added. Once the instantane
velocity field of the carrier flow is known, particles can b
advanced since there is no unknown in the particle mom
tum equation. However, most of the flows encountered
practice are turbulent. They involve a huge number of
grees of freedom, scaling as Re9/4, where the Reynolds num
ber is typically of the order Re;1052107. Consequently,
such a direct approach, in the spirit of DNS~direct numerical
simulation!, is not feasible in practice and one has to com
up with areduced or contracted descriptionthat involves far
fewer degrees of freedom.

In dispersed turbulent two-phase flow modeling, the fi
step consists in adopting a statistical point of view, just as
most single-phase turbulence models. This is actually a c
855 ©1999 The American Physical Society
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sical step in physics where probabilistic arguments are u
in ~deterministic! systems involving a very large number
degrees of freedom. This also reflects the fact that we
usually not interested in the full description of the flow a
of the particles in space and time but rather in limited inf
mation about some statistical characteristics, such as m
velocities, particle mean concentration, and energy, etc. T
statistical approach can be performed at different levels
description. The most fundamental level is the direct sim
lation mentioned above in which all the degrees of freed
~or the exact instantaneous equations! are explicitly solved.
This is the equivalent of a microscopic description. At t
other extreme of the modeling spectra, one can try to exp
directly the statistical quantities of interest~mean velocities,
mean energies, etc.! as the solutions of partial differentia
equations. These equations are derived by applying an a
aging operator~Reynolds operator or even spatial filterin!
to the exact instantaneous equations. This leads to uncl
mean equations; phenomenological assumptions have th
be made~such as the existence of a turbulent viscosity
models for pressure redistribution terms!. Such an approach
is the equivalent of a macroscopic description. In the pres
paper, the leading idea is to propose closures at an inte
diate level: the exact instantaneous behavior of the syste
replaced by a probabilistic model and closures are there
put forward for the probability density function~PDF! of the
state variables which are retained to describe the sys
This is called a PDF approach since what is actually mode
is a certain PDF; it can be regarded as a mesoscopic des
tion. This approach is similar to the one already applied
derive the hydrodynamical equations, such as Euler
Navier-Stokes equations. In that context, the hydrodynam
level of description defines the macroscopic level. The eq
tions can either be derived directly by writing balance eq
tions and by assuming Fick and Fourier laws, or by fi
modeling the PDF equation~typically the Boltzmann equa
tion! at the mesoscopic level from which the hydrodynami
equations are obtained simply as transport equations for
ferent moments of the PDF.

In the following, we limit our attention to dilute two
phase flows where, due to low particle concentration, in
particle collisions and modification of fluid turbulence by t
particles can be neglected. However, one central is
namely particle dispersion, remains to be addressed.
refers to the fact that in the particle equation of motion~1!
the driving term, which involves the instantaneous fluid v
locity ‘‘seen’’ by the particlesU, is not known since only
limited information~such as the mean fluid velocity^Uf& or
its turbulent kinetic energy! is available. This question ha
already received a great deal of attention in the past ye
Most notably, Reeks has proposed an equation, called
kinetic equation, for the PDF of particle location and velo
ity @3–5#. Apart from this classical PDF approach, a numb
of stochastic models have been devised to represent the
cessive fluid velocities encountered by the particles usu
under the name of Lagrangian or particle-tracking a
proaches@6# ~cf. @7# for a discussion of popular models!.

The present paper has several aims. The first purpose
propose a general framework, the PDF framework, to a
lyze and discuss various proposals. This formulation help
recall and clarify an often-forgotten point: Lagrangian mo
ed
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els are also PDF models, however presented directly a
Monte Carlo simulation of an underlying PDF. For that pu
pose, basic elements of stochastic modeling are briefly
sented in Sec. II for the sake of completeness. A sec
purpose is to put the emphasis on a central issue which is
choice of the state variables retained to describe two-ph
flows. This choice is important for many reasons: it defin
the amount of information available within one formulatio
a different choice makes the modeling step more or less
ficult and, above all, more or less justified. This point shou
not be confused with the precise form of expressions pu
the different models. A given model can perform more
less satisfactorily even if the choice of the variables appe
‘‘reasonable.’’ Yet, a satisfactory model is probably mo
difficult to express with an unsuitable choice of state va
ables. The present work has also some precise aims. In
first part of the paper~Sec. III!, a different way to obtain the
kinetic equation is presented. The method used here~briefly
recalled in the Appendix! is based on the cumulant expa
sion of the governing stochastic differential equation~SDE!
which is the particle equation of motion with a random ter
This alternative derivation is believed to be more evide
both mathematically and physically, than previous metho
as it avoids the explicit introduction of Kraichnan’s LHDIA
formalism. In the second part of the present contribut
~Sec. IV!, a more general formulation is put forward, wit
the phase space including the fluid velocity along the part
trajectories as an additional variable. A stochastic diffus
model for this variable is written, so that the formulatio
becomes closed and the governing PDF equation can be
rived. Then~Sec. V!, a new general one-point PDF is intro
duced from which both sets of equations~related to both
fluid and particle mean variables! can be obtained. The dis
cussion is also extended to two-point PDF for the fluid ph
since this is the first level of description where the issue
particle dispersion appears in closed form.

II. TRAJECTORY AND PDF APPROACHES
TO STOCHASTIC MODELING

Most attempts at turbulence modeling follow a statistic
approach, either in terms of transport equations for so
mean values~moments! or using the stochastic reasoning.
is the latter that will be of interest for us here~moment equa-
tions can always be derived from the closed PDF of a s
chastic process!. In stochastic modeling, there are two diffe
ent, yet corresponding, points of view@8#. The first one is the
trajectory point of view which consists in writing an evolu
tion equation~generally a stochastic differential equation! for
a large number of samples of the vector processX. The
second one is the PDF standpoint which deals with the t
evolution equation of the PDFP of the process. The equiva
lence is clearly exemplified for the class of so-called stoch
tic diffusion processes@8#, to which we restrain ourselves i
the present paper. The trajectory point of view consists t
in writing Langevin types of equations involving the incr
ments of the Wiener processes,

dXi5Di~X!dt1bi j ~X!dWj , ~2!
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whereD stands for the drift vector andbi j for the diffusion
matrix. In that case, the corresponding PDF equation is
Fokker-Planck equation,

]P

]t
52

]

]xi
@Di~X!P#1

1

2

]2

]xi]xj
@Bi j ~X!P#, ~3!

wherex is the phase space variable corresponding toX. The
Fokker-Planck equation involves the matrixBi j 5bikbjk
which is always a positive-definite matrix. Strictly speakin
there is more information contained in the trajectory point
view since different diffusion matricesbi j can give the same
matrix Bi j in the Fokker-Planck equation. It is only whe
there is a one-to-one correspondence between the mat
bi j andBi j that the two points of view are strictly equivalen
However, in a loose sense they will be considered below
equivalent.

Models considered in the present paper also fit into
description. The Lagrangian particle models, common in
mospheric dispersion studies, illustrate the trajectory poin
view: they consist in a trajectory or Monte-Carlo simulati
of the underlying PDF. On the other hand, the model fr
Sec. III, which we will call~for historical reasons! the kinetic
equation model, retains only solid particle locations and
locities and handles a probability densityP(t,x,v). The fluid
seen here,U, is therefore an external force whose statisti
effect has to be modeled. On the contrary, in the Lagrang
approach~Sec. IV!, this very variable is included in the defi
nition of the system considered and the PDF actually hand
is P(t,x,v,u). The point that sometimes gets confused is t
the major difference between models lies not in the form
lation ~either trajectory or PDF!, because they are equivalen
but rather in the choice of the vector of state variables.

III. THE KINETIC EQUATION MODEL

In the turbulent two-phase flow domain, pioneering wor
of Reeks@3,4# established the kinetic equation for dispers
particles and derived the conservation equations next. An
gously to the Boltzmann equation for gas molecules, the
netic equation for particles is an evolution equation of
probability densityP(x,v,t) in the phase space of partic
positionx and velocityv. Reeks@3# derived the kinetic equa
tion for particles in homogeneous turbulence, using the r
dom Galilean transformation~RGT!. In a subsequent pape
@4#, the equation has been obtained for the general cas
nonhomogeneous turbulent flows. The method used was
developed within the Lagrangian history direct interacti
approximation~LHDIA, @9#, comprehensively described b
McComb@10#!. Recently, Hyland@11# presented his alterna
tive derivation of the kinetic equation for dispersed particl
based on results from advanced functional calculus. The
sulting equation can be written in the form

S ]

]t
1v i

]

]xi
2

]

]v i

v i

tp
D P5

]

]v i
S ]

]v j
m i j 1

]

]xj
l i j 1g i D P.

~4!

Here,m i j (x,v,t) and l i j (x,v,t) are diffusion tensors in the
phase space andg i(x,v,t) is a drift vector reflecting the in-
homogeneities of the fluid turbulence. They depend ontp
and are also functionally dependent on the random par
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the driving fluid velocityU in Eq. ~1!; the actual form ofm,
l, andg will be given below.

We will now derive the kinetic equation~4!, starting from
the system of governing equations~1! for the particle motion
in turbulent fluid. To this aim, the method described in t
Appendix will be applied directly to Eq.~1!, written in short-
hand notation asŻ i5Fi . It is equivalent to Eqs.~A3! and
~A4! with a51 and

Z5F x
VG , F~0!5F V

2
V

tp
1

^U&
tp

1FE
G , F~1!5F0f G , ~5!

where

^U&
tp

1FE5G.

The velocity of the fluid ‘‘seen’’ by the particles has bee
decomposed here into the mean and fluctuation:U5^U&
1U8 and f5U8/tp .

As shown in the Appendix, from the SDE~A3! for a
processZ, the corresponding PDF transport equation~A13!
can be derived. In order to apply this statement here, a
more expressions present in Eq.~A13! have to be specified
and computed first for a particular processZ, as defined by
Eq. ~5!.

As already noted in Sec. II, we will adopt throughout t
paper the following convention: stochastic processes are
noted by capital letters~U,V,Z, etc.! to distinguish them
from the corresponding phase space variables~u,v,z, respec-
tively! or, alternatively, from a particular realization of th
process. The unperturbed equation for a deterministic~non-
stochastic! systemz(d) writes ż(d)5F(0) or, explicitly,

ẋ~d!5v~d! ,
~6!

v̇~d!52
v~d!

tp
1G.

The subscript ‘‘(d)’’ will now be skipped; as explained in
the Appendix, we notev5v(t) and v2t5v(t2t). For G
50 we obtain

vt5v exp~2t/tp!,

xt5x1tpv@12exp~2t/tp!#,

or ~7!

v5vt exp~t/tp!,

x5xt2tpvt@exp~t/tp!21#.

For any function

h5h„x~x2t,v2t!,v~x2t,v2t!…

we have

]h

]v i
2t 5

]h

]xj

]xj

]v i
2t 1

]h

]v j

]v j

]v i
2t . ~8!
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Thus, using Eq.~7!,

]

]v i
2t 5tp~12e2t/tp!

]

]xi
1e2t/tp

]

]v i
. ~9!

Substitution into Eq.~A13!, with s5t2t, results in

]P

]t
1

]

]xi
~v i P!1

]

]v i
S 2

v i P

tp
D

5
]

]v i
H E

0

t

e~s2t !/tpK f i~z,t !
]

]v j
f j~zs2t,s!L ds

1E
0

t

tp~12e~s2t !/tp!

3 K f i~z,t !
]

]xj
f j~zs2t,s!L dsJ P. ~10!

We recall that in the notation of LHDIA@cf. Eq. ~A8!#

f~zs2t,s![f~x,v,tus!

andf should mean the generalized Lagrangian force actin
time s on the particle that passes throughx with a velocityv
at some labeling timet. The force depends on the partic
trajectory~and this somehow explains the words ‘‘Lagran
ian history’’!; it is, obviously, proportional to the velocity o
the fluid ‘‘seen’’ by the particle.

If t is considered as the initial time,f is the ‘‘classical’’
Lagrangian force. On the other hand, fors5t we identify f
as the Eulerian force and note

f~z0,t ![f~x,t !.

Thus the final form of the kinetic equation for homogeneo
turbulence is obtained and Eq.~10! becomes identical with
formula ~41! of Reeks@4#:

S ]

]t
1v i

]

]xi
2

]

]v i

v i

tp
D P~x,v,t !

5
]

]v i
H E

0

t

e~s2t !/tpK f i~x,t !
]

]v j
f j~x,v,tus!L ds

1E
0

t

tp~12e~s2t !/tp!K f i~x,t !
]

]xj
f j~x,v,tus!L dsJ

3P~x,v,t !. ~11!

In the general case of nonuniform flows, the unperturb
equation takes the form

ẋ~d!5v~d! ,
~12!

v̇~d!52
1

tp~x~d! ,t !
v~d!1G~x~d! ,t !.

So, unperturbed particle trajectories are more complica
than those given explicitly in Eq.~7!. Following our standard
notation, fort5t2s they are symbolically written as
at

s

d

d

xt5x~d!~x,v,tus!,
~13!

vt5v~d!~x,v,tus!,

and should be read as the position~velocity, respectively! at
time s of a particle that passes through~x,v! at time t. We
define

gi j ~sut !5
]x~d! j

]v i
2t , ġi j ~sut !5

d

dt
gi j ~sut !. ~14!

So, instead of Eq.~9! we have

]

]v i
s2t 5gi j ~sut !

]

]xj
1ġi j ~sut !

]

]v j
. ~15!

Then, following the same steps as in the derivation of
PDF transport equation in the previous case@Eq. ~11!#, the
corresponding PDF equation for dispersed particles in g
eral nonuniform flows, identical to Eq.~88! in the Reeks
paper@4#, is obtained:

S ]

]t
1v i

]

]xi
2

]

]v i

v i

tp
D P~x,v,t !

5
]

]v i
H E

0

t

ġik~sut !K f k~x,t !
]

]v j
f j~x,v,tus!L ds

1E
0

t

gik~sut !K f k~x,t !
]

]xj
f j~x,v,tus!L dsJ P~x,v,t !.

~16!

Comparing the above equation with the shorthand form~4!,
explicit expressions for diffusion tensorsm, l, and forg can
be easily found.

Contrary to the Boltzmann equation for gas, where
only mechanism to change the velocity of molecules is
the collision term and the interactions between molecules
supposed to be instantaneous~with no history!, in the case of
the kinetic equation for particles in turbulent flow, histo
terms are present. Roughly speaking, these terms are the
integrals over the correlations of fluid velocity along the p
ticle trajectory~fluid ‘‘seen’’ by particles!.

Although formally the above equation is akin to th
Fokker-Planck equation, in fact it is not. It has been p
forward @3# that the kinetic equation differs from a classic
Fokker-Planck equation since in the particle equation of m
tion the fluid velocity ‘‘seen’’ could not be regarded, in ge
eral, as a white-noise term. However, this single argumen
not sufficient to rule out similarity with Fokker-Planck equ
tions. If we skip the issue of the modeling ofl and m and
only regard them as given functions, it appears that with
proposed closure expression the resulting kinetic equa
does have the form of a general Fokker-Planck equat
Indeed, using vector notation for the state vector, hereX
5(x,V), and considering constantl i j andm i j ~for the sake
of simplicity!, the kinetic equation is easily rewritten in th
form ~3! with B expressed as a block matrix:
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B5S 0 u l i j

22 22

l j i u m i j 1m j i

D . ~17!

The diffusion matrix which enters the second-order deri
tive in the Fokker-Planck equation has to be positive defin
However, in the present case, it is straightforward to sh
that its determinant is detB52(detl)2. This implies that
the product of the eigenvalues ofB is negative and thatB has
always at least one negative eigenvalue. Therefore, it is
simply the very existence of the tensorl but rather the fact
that it causes theB matrix not to be positive-definite tha
makes the kinetic equation different from classical Fokk
Planck equations. This also means that the vector stoch
processx(t), V(t) is not Markovian. Moreover, since th
eigenvalues ofB correspond to diffusion coefficients, th
existence of a negative eigenvalue means that, in the p
space of~x,V!, the effect of the fluid velocity seen by pa
ticles is to induce an ‘‘antidiffusion’’ behavior.

IV. THE LANGEVIN EQUATION MODEL

The kinetic equation derived in the preceding section
in principle be used to obtain transport equations for
moments of the PDF, such as the mean particle velo
field, the particle turbulent kinetic energy, etc. It is dev
oped following the PDF point of view and retains only pa
ticle variables~x,V! in the state vector. Consequently, info
mation on the statistics of the fluid velocity seen by particl
U, has to be input since this variable is external to the sys
considered. In the simplest case of homogeneous turbule
the statistics of the random force can tentatively be assu
known. In particular, the Lagrangian autocorrelation of t
fluid velocity along the particle trajectories can be taken
the decaying exponential with the modified integral corre
tion time ~cf. below!. However, in the general case, comin
up with a satisfactory closure for the flux induced by t
fluid seen appears as a difficult task.

An alternative approach to the two-phase system
scribed is to include the fluid velocity along the particle tr
jectories as a new independent variable. The state vect
then extended toX5(x,V,U). The new variable is governe
by its own evolution equation, and the complete system
time evolution equations becomes

dx

dt
5V, ~18!

dV

dt
5

U2V

tp
, ~19!

dU

dt
5A. ~20!

In the last equation, the time rate of change of the fl
velocity seen, sayA, is an external term which has to b
modeled. The corresponding~unclosed! equation for the
PDF P(t,x,v,u) is
-
.
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f

d

]P

]t
1v i

]P

]xi
52

]

]v i
F S ui2v i

tp
D PG2

]

]ui
@^Ai u~x,v,u!&P#.

~21!

Since the fluid velocity seen is now included in the sta
vector, the particle momentum equation is closed. Howev
the closure issue has been shifted to the change rate o
variableU, as manifested by the unknown term^Ai u(x,v,u)&
in the PDF equation; it denotes the mean value ofAi at x,
conditioned onV5v and U5u. This procedure could be
repeated any number of times and is typical of a hierarchy
~unclosed! PDF equations such as the BBGKY equations
statistical mechanics. There is, however, a precise phys
reasoning behind such a method that can justify such a m
@12#. In a given situation, one introduces typical~or refer-
ence! length and time scales which, roughly speaking, defi
the scales or levels at which a system is studied. Vari
degrees of freedom of the system~possibly an infinite num-
ber of them! are then divided into slow and fast variable
with respect to these scales~a fast variable is a random var
able whose characteristic time scale is much smaller than
reference one!. The main idea is to retain in the state vect
the slow modes while removing the fast ones~using, for
example, fast-variable elimination techniques@13#! and re-
place them by models which represent their equilibrium v
ues and usually involve white-noise terms. This procedur
successful when the so-called ‘‘fast modes’’ have charac
istic time scales which are negligible with respect to the r
erence time scale, thereby justifying replacing their effe
by Wiener processes. As an illustration of this procedu
application of Kolmogorov’s hypotheses suggests that,
high-Reynolds turbulent flows and for a reference time sc
which belongs to the inertia range, fluid particle accele
tions are nearly uncorrelated while fluid velocities are s
well correlated@14#. Therefore, using the present termino
ogy, Kolmogorov theory indicates that, for a time interval
the inertia range, fluid particle accelerations are fast variab
that can be eliminated. In other words, Kolmogorov theo
supports the idea of keeping fluid velocity in the vector
state variables and of modeling fluid particle accelerati
This approximation is the starting point behind Langev
equations@12,15# proposed for fluid particle velocitiesUf
~denoted by the subscriptf to distinguish them from the fluid
velocities seen by solid particles!. They are developed alon
the trajectory point of view and the time evolution equatio
are SDEs. The model takes the form of a diffusion proc
with a linear drift term@15#

dUf ,i52
1

r f

]^p&
]xi

dt1Gi j ~U f , j2^U f , j&!dt1AC0^e&dWi .

~22!

Here,^p& is the mean pressure field,^e& is the mean turbulen
energy dissipation rate, anddW stands for a vector of inde
pendent Gaussian white noise. This form of the model can
directly assumed or can be derived from underlying~‘‘mi-
croscopic’’! modeling steps which make use of Onsage
hypotheses@16#. The particular model we will consider
mainly for simplicity reasons, uses an isotropic form with
return-to-equilibrium term for the matrixG ~Ref. @17#!:
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Gi j 52
1

TL
d i j 52S 1

2
1

3

4
C0D ^e&

k
d i j , ~23!

wherek is the turbulent kinetic energy.
For two-phase flow modeling purposes, the problem

more complicated since one has to write a model for
velocity of the fluid seen,U, whose statistics differ from
fluid particle velocitiesUf . The issue is further compounde
by particle inertia and by crossing-trajectory effects. Nev
theless, a current and simple way is to use similar ideas
to propose a Langevin model forU @7,18,19#. Still relying on
Kolmogorov hypotheses, a simple model consists in ass
ing a form similar to the fluid particle case and to write~no
sum overi !

dUi52
1

r f

]^p&
]xi

dt2
Ui2^Ui&

TL,i*
dt1ABidWi , ~24!

whereBi is the diffusion term andTL* is the integral time
scale of the fluid seen. Csanady’s expressions@7# can be used
for the time scales to account for the crossing-trajectory
fect when a mean drift of particles~due, for example, to an
external fieldFe such as gravity! is present

TL,i* 5
TL

A11b2j2
, TL,'* 5

TL

A114b2j2
. ~25!

j is the normalized drift velocity andb is the ratio of La-
grangian to Eulerian time scales,

j25
u^U&2^V&u2

2k/3
, b5

TL

TE
. ~26!

The corrections to the~isotropic! fluid time scale,TL , are
different in the direction parallel to the mean drift betwe
the particles and the fluid~noted with the indexi! and in the
direction perpendicular to it~noted with the index'!. When
the reference system is chosen with one direction aligne
the mean drift,i 51 say, thenTL,i* 5TL,i* for i 51 andTL,i*
5TL,'* for i 52,3. Therefore, even with the simplest flu
particle Langevin model which involves only one time sca
TL , the extension to two-phase flows requires alread
nonisotropic form of the return-to-equilibrium termGi j*
521/TL,i* d i j .

The value of the diffusion coefficientsBi can be obtained
as follows. Letbi denote the denominator in Eq.~25!, i.e.,
bi5TL /TL,i* . The turbulent kinetic energy of the fluid seen
defined as

k5
1

2
^~U2^U&!2&.

In the case of isotropic turbulence, using the Ito formu
from Eq. ~24! we can establish the corresponding evoluti
equation fork and use the identitydk/dt52^e& which as-
sumes that the time evolution of the kinetic energy of
fluid seen is the same as that of the fluid kinetic energy~we
assume here no bias!. Finally, this results in the expressio
for Bi :
s
e

-
nd

-

f-

to

a

,

e

Bi5
2

3
^e&F S 11

3

2
C0Dbi21G .

In the case of small-inertia particles (bi51), Bi becomes
equal toAC0^e& and the evolution of the fluid seen, Eq.~24!,
becomes identical with that of the fluid, Eq.~22!, as ex-
pected. Yet, in the presence of a mean drift between the fl
and the particles (biÞ1), it is worth noting that the diffusion
term in the equation for the fluid seen has now an anisotro
expression contrary to the fluid particle case.

The corresponding PDF equation forP(t,x,v,u) is closed
and has the form

]P

]t
1v i

]P

]xi
52

]

]v i
F S ui2v i

tp
D PG1

1

r f

]^p&
]xi

]P

]ui

1
]

]ui
F S ui2^Ui&

TL*
D PG1

1

2

]2

]ui
2 @Bi P#.

~27!

The Langevin equation~24! is certainly not definitive for
the general nonhomogeneous case where one expects s
gradients of turbulence statistics to enter into the picture. T
above derivation of the diffusion coefficients can still be c
ried out but becomes more involved and this extension is
included here. Indeed, the point of the present discussio
not to go into details of various proposals which belong
the same type but rather to compare characteristics of dif
ent types of models. Therefore, the simple case of isotro
turbulence is only considered to avoid more complica
forms. Nevertheless, it should be emphasized that, altho
some proposals have been discussed and used at length@19#,
they still lack rigorous theoretical justification. They are sim
ply direct extensions of models for real fluid particles. Ev
if one accepts a Langevin equation forUf , there is at presen
no theoretical derivation of a similar Langevin equation f
U. In other words, improvement of current models is s
very much an important issue and accurate modeling of
fluid velocity seen remains an open question.

V. FLUID AND SOLID PARTICLE PDF PICTURE

The PDF transport equations for the Langevin equat
model~27! and the kinetic equation~16! differ by the use of
an extra variable. However, both PDF concern only variab
attached to solid particles and consequently only statist
properties of the solid phase can be extracted from th
PDF. Characteristics of the fluid phase remain external
have to be developed by another route~usually classical
Reynolds-stress modeling!. The discussion about the choic
of the variables suggests extending the PDF framework
include the two phases. Indeed, we are not dealing only w
solid particles being randomly carried about by fluid turb
lence but with a two-component system. Therefore, it see
a logical step to introduce a fluid-solid particle PDF pictu
and to discuss fluid and solid properties from the same p
of view. The corresponding PDF that is needed for the p
pose is written asPf ps(t,xf ,uf ;x,v,u). It represents the
probability that, at timet, a fluid particle takes at locationxf
a velocityuf while a solid particle at locationx has a veloc-
ity v and samples a fluid velocity equal tou. It is necessary
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to introduce two different independent location variabl
namelyxf andx, since fluid and solid particles are not co
vected with the same velocities. The indexes ofPf ps stand
for fluid, particle, and sampled~or ‘‘seen’’! fluid, respec-
tively.

Two marginal PDF have then a clear meaning and co
spond to known proposals. The first one is obtained by in
grating over all solid-phase characteristics and is the P
related to fluid-phase characteristics, notedPf :

Pf~ t,xf ,uf !5E Pf ps~ t,xf ,uf ;x,v,u!dxdvdu. ~28!

The second marginal PDF is obtained by integrating over
fluid-phase characteristics and is the PDF related to so
phase characteristics~the same as in Sec. IV!, notedPp here:

Pp~ t,x,v,u!5E Pf ps~ t,xf ,uf ;x,v,u!dxfduf . ~29!

Computations of the complete fluid-particle PDFPf ps can be
performed using the trajectory point of view or, in oth
words, by Lagrangian-Lagrangian simulations. Time evo
tion equations are then written for an ensemble made u
fluid and solid particles which are tracked together. Bo
have specified variables attached to them which appea
independent variables in the PDFPf ps . Fluid particle time
evolution equations can be modeled as

dxf5Ufdt, ~30!

dUf52
1

r
¹^p&dt2G~Uf2^Uf&!dt1AC0^e&dW.

~31!

This indicates that for fluid-phase characteristics the mode
identical to Pope’s model@15#. Relations with classical mo
ment equations and interest in this model have already b
discussed@17#. The time evolution equations for the var
ables attached to solid particles are Eqs.~18!, ~19!, and~24!.
This means that for solid-phase characteristics the mod
identical to the one discussed just before. Use of this flu
particle PDF allows an equal treatment of both phases an
a compact way to present a complete two-phase model.
it neither solves nor simplifies the difficulties related to t
modeling of the fluid velocity seen. The necessity of suc
model, even for the fluid-solid particle PDFPf ps , is not an
inherent element of the PDF framework but stems from
limitation to one-point PDF. For two-phase flow problem
the choice of only one-point PDF implies insufficient ava
able information at the particle level. It is worth emphasizi
that, if a generaltwo-point PDF model were available, th
problem of determining solid particle statistical propert
would be closed. Indeed, in this case the model for the fl
velocity ‘‘seen’’ U would no longer be needed, since th
fluid velocity at the particle locationx2 at t2 , given the par-
ticle locationx1 at t1 , could be determined directly from th
conditional probability Pf(t2 ,x2 ,u2ut1 ,x1 ,u1). This is
clearly an indication that, more than improved kinetic c
sures, the real issue is a multipoint PDF or statistical tre
ment of the fluid phase.
,
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VI. CONCLUSION

The purpose of the present paper is to discuss the
grangian modeling of two-phase dispersed turbulent flo
The important issue for modeling is the choice of the va
ables that enter the state vector to represent a partic
physical system. In the first formulation presented above~the
kinetic equation! only solid particle characteristics were co
sidered while the Langevin model includes the fluid veloc
‘‘seen’’ as a further and independent variable. It has be
recalled that accurate modeling of the fluid seen remains
open issue.

Concerning the first formulation in terms of particle loc
tion and velocity, we have proposed a new, concise,
hopefully elegant way to derive formally the kinetic equati
for particles in a turbulent flow. The equation is not close
because of the unknown form of the correlation of fluid v
locity along particle trajectories.

In the second formulation, velocity of the fluid seen b
particles has been added to the system. This velocity is
posed to be governed by the Langevin equation model;
represents an extension of ideas already used for turbul
modeling. Alternatively, the Langevin model can be look
at as a PDF kind of closure. Therefore, the discussion
carried out using the PDF formalism. Reformulation in term
of PDF leads quite naturally to the theoretical considerati
of consistency relations between different closure propos
Moreover, once a general model for the correlations of fl
velocity ‘‘seen’’ by the particles is proposed and validate
the governing Eulerian~i.e., two-fluid! equations for the two-
phase flow can be derived from the PDF equation.

Finally, it is suggested not to limit oneself to variable
related to solid particles only and to extend the PDF form
ism to include quantities of both phases. A first proposal
a fluid-solid particle PDF has been presented.

APPENDIX: FROM SDE TO PDF TRANSPORT EQUATION

This appendix describes a general method to obtain a g
erning transport equation for the PDF of a stochastic proc
given a stochastic differential equation for its trajectorie
The mathematical formalism presented below is taken b
cally from Van Kampen@20#; technical details are given in
@21#.

Consider first a linear stochastic differential equati
~SDE! for a vector processZ:

dZ

dt
5@A01aA1~ t !#Z, ~A1!

whereA0 ,A1 are linear operators~they can be thought of a
matrices or differential operators!; A0 is deterministic while
A1 is random with a finite autocorrelation timetc ; a repre-
sents the level of fluctuations; it is supposed thatatc!1.
Using the substitutionZ(t)5exp(tA0)V(t), applying the cu-
mulant expansion@20#, limited to the second order ina,
taking the ensemble average of the solution of the co
sponding SDE forV, and substituting back forZ, results in
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d^Z~ t !&
dt

5FA01a^A1~ t !&

1a2E
0

t

^^A1~ t !etA0A1~ t2t!&&e2tA0dtG^Z~ t !&.

~A2!

The symboleB, whereB is an operator, is formally define
as the sum of the Taylor series with powers ofB and double
angular brackets stand for the central moments; for exam
a symbol

^^ab&&5^~a2^a&!~b2^b&!&

denotes the covariance of two random variablesa, b. Equa-
tion ~A2! can be thought of as a ‘‘renormalized’’ form of th
initial equation, Eq.~A1!, where the effect of fluctuation
appears in the form of an additional deterministic opera
The expansion limited to first order ina represents the de
terministic ordinary differential equation~ODE! with no ef-
fect of random fluctuations.

For a nonlinear SDE, instead of Eq.~A1! we consider

dZ

dt
5F~Z,t,Y! ~A3!

and suppose thatFi can be split into two parts,

Fi~Z,t,Y!5Fi
0~Z!1aFi

1~Z,t,Y!, ~A4!

whereFi
0 is stationary and not stochastic whileFi

1 is random
and of zero mean. Let the functiony(t) be a single realiza-
tion of a stationary stochastic processY(t). A deterministic
ODE,

dzi

dt
5Fi„z,t,y~ t !…, ~A5!

gives the trajectory of a particular realizationz of the process
Z in the phase space. Density of the flow inz space satisfies
the Liouville equation

]r~z,t !

]t
52F]Fi

0~z!

]zi
1a

]Fi
1~z,t,y!

]zi
Gr

5@A0~z!1aA1~z,t,y!#r, ~A6!

with the operatorsA0 andA1 introduced as

A052
]~Fi

0
• !

]zi
, A152

]~Fi
1
• !

]zi
.

The explicit dependence ofFi
1 and A1 on Y(t) will hence-

forth be skipped in the notation. WhenY is substituted fory,
Eq. ~A6! becomes a linear SDE forr. The form of Eq.~A6!
is identical to that of Eq.~A1! with z replaced byr. Thus, we
can write an equivalent of Eq.~A2! as
le,

r.

]^r&
]t

52
]@Fi

0^r&#

]zi

1Fa2E
0

t K ]Fi
1~ t !

]zi
etA0

]F j
1~ t2t!

]zj
2t L e2tA0dtG ^r&.

~A7!

The superscript notation represents an important point
is used as follows: letz denote the value~at time t! of a
particular realization of the stochastic process, thenzt stands
for its value at time instantt1t; in particular,z2t is the
value at the initial time. More generally, suppose thatf is a
function defined along the trajectory ofz. Then f (zt,t1t)
denotes the value of the function at timet1t on the trajec-
tory that passed by a particular value ofz at t. In the LHDIA
notation, it would be written as

f ~zt,t1t![ f ~z,tut1t!; ~A8!

t is called the labeling time andt1t is the measuring time
This generalized notation contains both Eulerian~for t50!
and Lagrangian descriptions.

At any value oft, the density of the flow in the phas
space ofz, averaged over all possible realizationsy(t), is
equal to the probability density ofZ ~cf. @20#, Lemma
XVI.5.3!,

^r~z,t !&5P~z,t !. ~A9!

Moreover, the flow density inz space verifies

r~z,t !5r~z2t,0!
Dz2t

Dz
, ~A10!

whereDzt/Dz stands for the Jacobian of the transformati
z5z(t)→zt5z(t1t).

Now, consider the unperturbed Liouville equation, i.
Eq. ~A6! with a50. It is easily verified that its solution is
given by etA0f (z), where f (z) is any function. Then, the
following identity is obtained from Eq.~A10!:

etA0f ~z!5 f ~z2t!
Dz2t

Dz
. ~A11!

We also note in passing that, in particular, one can make
substitutionetA05Dz2t/Dz in Eq. ~A7!. As a consequence
of Eq. ~A11!, we have

e2tA0r~z,t !5r~zt,t !
Dzt

Dz
. ~A12!

Substituting this in Eq.~A7!, accounting for Eq.~A9!, and
using the identity~A11! with
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f ~z!5
]F j

1~z,t2t!

]zj
e2tA0^r~z,t !&5

]F j
1~z,t2t!

]zj
P~zt,t !

Dzt

Dz
,

the final form of the transport equation for the probability density function

]P~z,t !

]t
52

]@Fi
0P~z,t !#

]zi
1a2

]

]zi
E

0

t

dtK Fi
1~z,t !

Dz2t

Dz

]

]zj
2t F j

1~z2t,t2t!L Dz

Dz2t P~z,t ! ~A13!

is obtained. The first expression on the right-hand side represents the transport of the PDF by a purely deterministic
F0 while the second corresponds to the influence of the stochastic term which depends on correlations of the
componentF1. Moreover, it is noticed that to treat a nonlinear SDE, one has to revert to the PDF of the process, which
linearity of the description at the expense of increasing the dimensionality of the problem, cf. Eq.~A2! versus Eq.~A13!.
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